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Abstract 

In this study, we have proposed a model of the sliding window coherent system in case of multiple failures. The 

considered model consists of G linearly required multi-state elements and G number of parallel elements in A-within-B-

from-D/G for each multi-state. The system fails if at least A group elements out of B consecutive of D consecutive 

multi-state elements have performance lower than the weight w. We have evaluated the signature reliability, expected 

value and system sensitivity on the basis of the extended universal generating function of the considered system. 
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1. Introduction 
In the real life situation binary state system (BSS) depends on mainly two states namely 

completely working or total failure. To compute the reliability of any binary system many 

algorithms have been used including universal generating function (UGF). Levitin (2005) 

analyzed the computation of reliability of different binary and consecutive A-out-of-G systems by 

UGF. Levitin and Ben-Haim (2011) computed the reliability of the consecutive sliding window 

system (SWS) which have many possible states namely total failure and completely working 

using UGF algorithm. Sun et al. (2012) obtained the optimal solution for a transportation system 

by the analytical method. Ram (2013) discussed the survey of reliability evaluation of 

engineering system by various methods. Xiao et al. (2014) considered a B-gap-consecutive A-out-

of-D-from-G:F system and computed the reliability for various elements causing failure. Negi 

and Singh (2015) studied the non-repairable complex system which has two binary subsystems 

namely weighted A-out-of-G:G and weighted l-out-of-b:G and evaluated the reliability, mean 

time to failure and sensitivity using UGF. 

 

It is well known fact that many engineering systems are not binary but they are a multi-state and 

multi-state system (MSS) are in general more reliable than BSS. MSS is based on the 

performance rate of the system. Further, Multi-state SWS is widely used in oil pipeline system, 

telecommunication system, mobile communication system, radar detection, quality control 

system etc. Levitin (2002) evaluated the reliability of linear multi-state SWS with multi-state 

elements using UGF technique. Levitin (2003) also studied linear multi-state SWS, which have G 

linear multi-state elements and evaluated the reliability of common supply failures in the system. 

Habib et al. (2007) generalized linear consecutive A-out-of-D-from-G:G system having multi-

state elements. They also have calculated the reliability of the system, which consists of G 
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linearly required multi-state elements. Yueqin et al. (2010) computed the reliability of multi-state 

A-out-of-G:G system using UGF algorithm. Xiang and Levitin (2012a, 2012b) proposed a linear 

multi-state SWS model which consists of G linearly required multi-state elements and evaluated 

the reliability of the combination of B-consecutive and A-out-of-G SWS. Levitin and Dai (2012) 

evaluated the reliability of A-out-of-G SWS. They proposed new linear multi-state SWS in case 

of multiple failures in which system is failed if the performance rate is less than total demand. 

Xiang et al. (2013) evaluated the optimal solution of multi-state A-out-of-G of consecutive SWS 

and computed the system reliability with the application of the genetic algorithm. Faghih-Roohi 

et al. (2014) discussed the availability and capacity of a dynamic system for multi-state weighted 

A-out-of-G system and given optimal solution by UGF and genetic algorithm. Li et al. (2014) 

analyzed the reliability of the multi-state system using UGF approach. Yu et al. (2014) evaluated 

the availability of a repairable multi-state system on the basis of the UGF and stochastic process. 

Xiao et al. (2015) studied the reliability of multi-state elements of the SWS having multiple 

failures, which have performance smaller than the allocation and optimized the system 

availability and cost analysis. Peng et al. (2017) considered a multi-state system having 

performance sharing groups of limited size and determined the reliability of the series multi-state 

system with the help of UGF technique. 

 

Further, in the context of the signature reliability of the coherent system is widely used to 

calculate the expected lifetime of any kind of system with independent and identically distributed 

(i.i.d.) elements. Navarro et al. (2007) introduced the family of univariate distribution. They 

computed the minimal and the maximal signature of a coherent system along with distribution, 

bounds and moments of lifetime distribution. Samaniego (2007) discussed the signature of 

different systems and applied signature in many engineering fields. Bhattacharya and Samaniego 

(2008) appraised the optimal arrangement of the element in the coherent system and evaluated the 

optimal solution of parallel and series-parallel systems. Navarro and Hernandez (2008) studied 

the mean residual lifetime functions of the finite mixture, ordering properties and limiting 

behaviors. They evaluated the meantime and signature of the coherent system. Navarro and Rubio 

(2009) computed the signature reliability and expected a lifetime of the coherent system with n 

elements. Eryimaz (2010) evaluated the reliability of consecutive k-system with some 

exchangeable element with the help of order stochastic of mixture representation. Navarro and 

Rychlik (2010) compared the expected lifetime of different systems and estimated the lifetime of 

i.i.d. elements in the lower and upper form. Mahmoudi and Asadi (2011) considered a coherent 

system and studied the dynamic signature with different properties of the signature. Marichal and 

Mathonet (2013) evaluated the weighted mean in case of an independent continuous lifetime and 

obtained the signature reliability of extension dependent lifetime of the coherent system. 

Eryilmaz (2012) determined the signature of a coherent system with the repairable element and 

calculated the expected lifetime for systems like linear consecutive A-within-B-out-of-G:F and B-

consecutive A-out-of-G:F. Da et al. (2012) computed the signature of the coherent system which 

decomposed into two or more subsystems and also using the redundancy of the backup system. 

Marichal and Mathonet (2013) evaluated the reliability function, signature, tail signature of the 

coherent system from the diagonal section by derivatives and with the help of structure function. 

Da Costa Bueno (2013) obtained the structure function of the multi-state monotone system by 

using a decomposition of multi-state systems. Franko and Tutuncu (2016) computed the 

reliability of repairable weighted A-out-of-G:G system in case of signature. Kumar and Singh 

(2017a, 2017b) studied the complex A-out-of-G coherent system and sliding window coherent 

system (SWCS) with i.i.d. elements and calculated various reliability measures such as signature, 

mean time to failure (MTTF), Barlow-Proschan index using UGF technique. 
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It is clear from the above discussions that many researchers computed the reliability, MTTF, cost 

of binary and multi-state systems with various techniques, but the signature of SWCS is yet to be 

studied. Keeping this fact in view, in the present work we propose to study the A-within-B-from-

D/G SWCS with G parallel i.i.d. elements consisting of the multi-state element (MSE) of the 

system. In this study, we have used UGF and Owen’s method to estimate the different 

characteristics such as signature, tail signature, sensitivity, Barlow-Proschan index and expected 

lifetime having structure or reliability function. 

 

Nomenclature 

G MSE in the system 

D consecutive elements in a group 

w weight for a group of D consecutive multi element (ME) 

jb  random performance of ME j 

aE  multi-state element a 

B consecutive groups in the considered system 

A failure groups within B consecutive groups 

As  signature of the A-within-B-from-D/G SWCS with A elements 

T lifetime of system 

R/H reliability/reliability function of the A-within-B-from-D/G SWCS 

 zUa  UGF of aE  

 zU a

~
 UGF of modified failure counter of aN  

iac ,
 the vector of size B consecutive groups of aE in state i 

iag ,
 state performance of elements of aE in state i 

SSF //  failure probability/tail signature/sensitivity of the A-within-B-from-D/G SWCS 

 TE  expected lifetime of the system elements 

ipC /  minimal signature/probability function of the A-within-B-from-D/G SWCS 

iaR ,
 the probability of the A-within-B-from-D/G SWCS with aE in state i 

 

2. Assessment of Signature Reliability of A-Within-B-From-D/GSWCS (Xiao et al., 

2015). 
Consider an A-within-B-from-D/G SWCS which contains G ordered MSE in which every element 

consists of G number of parallel elements. The failure element of the A-within-B-from-D/G 

system is presented when at least A-out of B-consecutive groups of D consecutive elements are 

greater than supply w. If the performance of D consecutive elements is less than weight w and a 

consecutive element consists of MSE, then the system fails if 





1ra

aj

j wb , where jb  is the 

random performance of MSE jE .Consider a set of B consecutive elements from MSE ( 1DB

) consisting of MSE 11 ...,,,  raBaa EEE . The system fails if events are lower than A groups 
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within B consecutive groups which can be expressed as awbI
Ba

ae

re

aj

j 












 









1 1

, where  zI  is 

an indicator function defined as  

 

 
 
 









otherwise,0

trueiszif,1

zI

zI
zI . 

 

Further, the system reliability of the sets of B consecutive groups of D consecutive MSE 

221 ...,,,  BDGEEE  can be written as  
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
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1 1BDG

a

Ba
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De

ej

j AwbIIPR                                                                   (1) 

 

From equation (1), we can evaluate the signature of the system having i.i.d. elements as

 GAsDA TTps : , where T is system lifetime and As  is the probability of the system failure. 

Boland (2001) obtained structure function R of the system having i.i.d. elements as  

 

 
 

 










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






R

AG

G
R
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G
s

Ga

A 
1

1

1
                                                                           (2) 

 

 

 

3. Evaluating the Failure Reliability of A-Within-B-From-D/G Failure Groups (Xiao 

et al., 2015) 
The failure element of the A-within-B-from-D/G system is discussed as if at least A-groups of B-

consecutive groups of D consecutive elements are not less than supply w. 

 

UGF of the failure element of the system with probability iaR ,  and state performance iag , is given 

by 





s

ia

A

i

g

iaa zRzU
1

,
,.)(

                                                                                                                     (3) 

 

Now, with the help of equation (3), the UGF of the groups BaNa , can be expressed as 





a

iaia

A

i

gc

iaa zRzU
1

.

,
,,.)(

~
                                                                                                                 (4) 

where, iac ,  is a vector which belongs to {0,1} and shows the working state of groups jBaN  . 
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Further, the UGF of the group BaNa  ,1  using operator 

  can be evaluated as 

    zuzUzU Daaa 


  ,
~

)(
~

1  

                   

 







a

lDaialDaia

DaB

i

gggc
L

l

lDaia zpR
1

,..

1

,,
,1,,,..


                                                                     (5) 

 

where,  

        lDaiaisialDaia grggggg ,,,,,, ,,...,3,2,                                                                          (6) 

 

and 

            wccIBcccgc lDaiaiaiaiahDaia   ,1,,,,,1, ,,,...,3,2,                                          (7) 

 

Now, the failure probability Fi of A-within-B-from-D/G SWCS if at least A groups out of B 

consecutive groups of D fail can be calculated as 

 

   




 
1

1

2121 1...1
BDG

i

iBDG FFFFFF                                                                         (8) 

 

Using equation (8) one can compute the failure probability F1 of modified UGF of the group NB 

as 

     



BM

i

iBiBB AcIRzUF
1

,,1 .
~

                                                                                         (9) 

 

Further, we can assessment the failure probability of  12 1 FF   and eliminate failure terms from 

 zUB

~
and then compute  zU B  by using the operator   as 

 

    zUzU BB

~
  

              iBiB

B
gc

iB

M

i

iB zAcIR ,, ,

,

1

, .. 


                                                                                         (10) 

 

Evaluating  zUB 1

~
  with the help of an operator 


 , we have 

      zuzUzU DBBB 


  ,
~

1                                                                                                      (11) 

 

Similarly, one can evaluate the value of  





1

1

1
a

i

ia FF  for 2,...,3,2  BDGa  from the 

equations (10-11). 
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4. Algorithm for Evaluating Reliability of A-Within-B-From-D/G Siding Window 

System (Xiao et al., 2015) 

Step 1. Construct UGF  zUB 1

~
  for jME and obtain  zU1  with the help of an operator  . 

Step 2. Modify  zU1  to  zU1

~
 and calculate the number of failure groups. 

Step 3. For 1,...,1  BDDj  

Evaluate     zuzUzU jDjDj ,)(1 


   and collect the like terms. 

Step 4. For GBDj ,...,  

Eliminate failure terms from  zUB

~
 and compute  zU Dj

~
. 

Step 5. Find       zuzUzU jDjDj ,
~

1 


   and collect the like terms. 

Step 6. Calculate   zURFF Dj  1

~
. 

Step 7. Find system reliability FR 1 . 

 

4.1 Algorithm for Evaluating Signature of A-Within-B-From-D/G SWCS with Its 

Reliability Function 
Step 1: Calculate the signature of the reliability function by (Boland, 2001) 

 
 

 
 












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




















lBH
BH

lBH
BH

l H

lB

B
H

lB

B
s 

1

1

1

1

                                                                       (12) 

and compute polynomial function of system   jGj
B

j

j qp
j

B
CpH 












1

 where,

BjsC
B

jBi

ij ,..,2,1,
1

 


. 

 

Step 2: Evaluate the tail signature of the system, i.e., (B+1)-tuple  BSSS ,...,0  using 

 












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lBH

B

li

il H

lB

B
sS 

1

1

                                                                                                  (13) 

 

Step 3: Calculate the reliability function with the help of Taylor expansion from polynomial 

function about x=1 by 











x
Hxxp B 1

)(                                                                                                                          (14) 

 

Step 4: Find the tail signature of the system reliability function from equation (12) as (Marichal 

and Mathonet, 2013). 

 
BlpD

B

lB
S l

l ,...,0),1(
!

!



                                                                                                  (15) 
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Step 5: Determine the signature of the system using equation (14) 

.,...,1,1 BlSSs ll  
                                                                                                              (16) 

 

4.2 Algorithm to Determine Expected Lifetime of A-Within-B-From-D/G System 

with Minimum Signature 
Step 1: Evaluate the expected lifetime of i.i.d. element system, which is exponentially distributed 

with mean . 

 

Step 2: Calculate the minimum signature of the A-within-B-from-D/G system with the expected 

lifetime of the reliability function by using 

   
 


G

i

G

i

iiiiiT tHdtHCtH
1 1

::1 )()(                                                                                          (17) 

where,   )( :1:1 tzPtH iDi  and   )( :: tzPtH iiDii   for .,...,2,1 ni   

 

Step 3: Compute the expected lifetime E(T) of the systems, which have i.i.d. elements by 

(Navarro and Rubio, 2009). 





G

i

i

i

C
TE

1

)(                                                                                                                             (18) 

where,  GiCi ,...,2,1  is a vector coefficient of minimal signature. 

 

4.3 Algorithm to Calculate Barlow-Proschan index of SWCS 
Estimate the Barlow and Proschan (1975) index of the i.i.d. elements are given by its reliability 

function in equation (2) as (Shapley, 1953; Owen, 1975, 1988). 

        GidxxHdxxRI ll

l

BP ,...,2,1,

1

0

1

0

                                                                      (19) 

where, R  and H  are structure and reliability functions of SWCS respectively. 

 

4.4 Algorithm for Determining Expected Value of Element X and Expected Cost 

Rate of System When Working Elements are Failed (Eryilmaz, 2012) 
Step 1: Evaluate the amount of failed elements at the time of system failure from signature 

GisiXE
G

i

i ,...,2,1,.)(
1




                                                                                                        

(20) 

 

Step 2: Calculate the E(X) and E(X)/E(T) of A-within-B-from-D/GSWCS with minimum 

signature. 

 

4.5 Sensitivity of A-Within-B-From-D/GSWCS 
The sensitivity of reliability function is defined as the rate of change in output due to an input of 

the system. If R and   are the reliability and parameter of the system respectively, then 

sensitivity S with the parameter is expressed as 
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




R
S                                                                                                                                         

(21) 

5. Illustration 
Consider a 2-within-3-from-3/5 SWCS with supply w=4.  Each of the MSE consists of 3 number 

of parallel elements having a failure and working performance 0and 1,1,2,2,1. 

 

The probability function  5,4,3,2,1ipi for each inner parallel element is given by  

 



G

B

iBi Rp
1

11 .

 
    1312111 1111 RRRp                                                                                               (22) 

    2322212 1111 RRRp                                                                                              (23) 

    3332313 1111 RRRp                                                                                               (24) 

    4342414 1111 RRRp                                                                                              (25) 

    5352515 1111 RRRp                                                                                              (26) 

 

Now, UGF of each MSE is obtained as  

    01 zpzpzU i

i

ii                                                                                                               (27) 

 

where, ip  is the probability function and 
iz is the working rate and 

0z failure rate. 

 

Further, UGF of SWCS for each MSE  5,4,3,2,1ipi of sliding window can be computed as 

    0

1

1

11 1 zpzpzU                                                                                                               (28) 

    0

2

1

22 1 zpzpzU                                                                                                             (29) 

    0

3

2

33 1 zpzpzU                                                                                                              (30) 

    0

4

2

44 1 zpzpzU                                                                                                             (31) 

    0

5

1

55 1 zpzpzU                                                                                                             (32) 

 

Now, using step1 of algorithm 1, we have UGF as 

   0,0,0

2 zzU   

 

For 1i  

       0,0,0

1

1,0,0

11 1 zpzpzU  . 

 

For 2i  

                0,0,0

21

1,0,0

12

0,1,0

21

1,1,0

210 1111 zppzppzppzppzU  . 

 

For 3i  
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           2,1,0

132

2,0,1

321

2,1,1

3211 11 zpppzpppzpppzU   

               0,0,0

321

0,1,0

312

0,0,1

321 1111111 zpppzpppzppp   

        0,1,1

321

2,0,0

321 111 zpppzppp  . 

Now with the help of equation (4), one can have the modified UGF  zU1

~
 of  zU1 as  

           2,0,1,1,0,0

321

2,1,1,0,0,0

3211 1
~

zpppzpppzU   

            2,0,0,1,0,0

321

2,1,0,1,0,0

132 111 zpppzppp   

                0,1,0,1,0,0

312

0,1,1,1,0,0

321

0,0,11,0,0,

321 11111 zpppzpppzppp 
 

      0,0,0,1,0,0

321 111 zppp   

 

For 4i  

              2,2,1,0,1,0

1432

2,2,0,0,1,0

432

2,2,1,0,0,0

43212 11
~

zppppzpppzppppzU   

               0,2,1,1,0,0

4321

2,0,0,1,1,0

432

2,0,1,1,1,0

432 1111 zppppzpppzppp   

             0,2,1,1,1,0

4321

0,2,0,1,1,0

432 1111 zppppzppp   

            0,0,0,1,1,0

432

0,0,1,1,0,0

432 11111 zpppzppp   

 

For 5i  

              1,2,2,0,0,1

54321

0,2,2,0,0,0

54321

1,2,2,0,0,0

543213 11
~

zpppppzpppppzpppppzU 

             1,0,2,1,1,0

54321

0,2,2,0,0,1

54321 111 zpppppzppppp 

     0,0,2,1,1,0

54321 11 zppppp 
 

              0,0,2,1,1,1

54321

1,0,2,1,1,1

54321 11111 zpppppzppppp   

           1,2,0,1,1,1

543

0,2,0,1,1,1

543 111 zpppzppp   

            0,0,0,1,1,1

543

1,0,0,1,1,1

543 11111 zpppzppp   

 

Hence, the failure probability of the SWCS is obtained as 

            5432154321543213 11111
~

pppppppppppppppzUF   

           54354354321 111111 ppppppppppp   

      543543 11111 pppppp   

431 pp  

 

Now, the reliability of the SWCS is 

431 ppFR                                                                                                                          (33) 

 333231333233313231333231 RRRRRRRRRRRR   

 434241434243414241434241 RRRRRRRRRRRR                                                          (34) 
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The structure function of the 2-within-3-from-3/5SWCS when all elements are identical  RRi 

is given by 
65432 615189 RRRRRR   

 

 

5.1 Signature of 2-Within-3-From-3/5 SWCS 
Using equation (14), we get a polynomial function )(xH  of 2-within-3-from-3/5 SWCS as 

 
65432 615189)( xxxxxxH  . 

 

The tail signature of the 2-within-3-from-3/5 SWCS can be obtained by equation (15) as 

 









 0,

5

3
,

10

9
,1,1,1S . 

 

One can get the signature of the system from equation (16) as 

 









 0,

5

3
,

10

3
,

10

1
,0,0s . 

 

 

5.2 Expected Lifetime of 2-Within-3-From-3/5 SWCS 
Using equation (17), we get expected lifetime from minimal signature as 

 
65432 615189)( xxxxxxH                                                                                        (35) 

 

Finally, one can calculate the minimal signature by equation (35) as 

 

Minimal signature  1,6,15,18,9,0  . 

 

Hence, expected lifetime is 

 

  2167.1TE . 

 

5.3 Expected Cost Rate of 2-Within-3-From-3/5 SWCS 

By using equation (20), we get the expected value of X is E(X)  XE as E(X)=4.5. 

 

Cost rate =
 
 

270.0
TE

XE
. 

 

5.4 Barlow- Proschan Index for 2-Within-3-From-3/5 SWCS 
Barlow-Proschan index of the considered system is obtained using equation (19) as 
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     
6

1
51093

1

0

5432

1

0

1

1   dRRRRRRdRHdIBP
. 

Similarly, obtain all Barlow-Proschan index of the 2-within-3-from-3/5 SWCS as 











6

1
,

6

1
,

6

1
,

6

1
,

6

1
,

6

1
BPI . 

5.5 Sensitivity of 2-Within-3-From-3/5 SWCS 
To obtain the sensitivity of 2-within-3-from-3/5 SWCS let us take value

55.0,8.0,7.0,65.0,6.0,5.0 434241333231  RRRRRR . Now differentiating the 

equation (34) with respect to different parameters, we have sensitivities as 

 

1652.0,1703.0,1362.0
33

3

32

2

31

1 















R

R
S

R

R
S

R

R
S  

 

0774.0,1401.0,1064.0
43

6

42

5

41

4 















R

R
S

R

R
S

R

R
S . 

 

6. Result and Discussion 
In this study, we deal with A-within-B-from-D/G SWCS and computed different reliability 

measures , viz. signature, expected lifetime, Barlow-Proschan Index and sensitivity of the 

proposed system. 

 

7. Conclusion 
In the present paper, we have studied the A-within-B-from-D/G SWCS incorporating multiple 

failures. An algorithm for evaluating signature estimation on the basis of Owen’s method and 

UGF technique has been used for the considered system. The algorithm is based on structure 

function, which has been used to evaluate the signature of the proposed system. The results show 

that the system signature is increasing w.r.t. the price value of the expected cost. Sensitivity with 

respect to parameters R32 and R42 is found to be highest and lowest respectively. 
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